Release Notes

OmniSwitch 6400

Release 6.3.3.R01

These release notes accompany release 6.3.3.R01 software for the OmniSwitch 6400. They provide important information on individual software and hardware features. Since much of the information in these release notes is not included in the hardware and software user manuals, it is important that you read all sections of this document before installing new hardware or loading new software.

Contents

- Related Documentation, see page 3
- System Requirements, see page 4
 - o Memory Requirements
 - o UBoot, FPGA, MiniBoot, BootROM, and Upgrade Requirements
- New Hardware Supported, see page 5
- New Software Features, see page 8
- **SNMP Traps**, see page 38
- Unsupported Software Features, see page 44
- Unsupported CLI Commands, see page 44
- Unsupported MIBs, see page 47
- Open Problem Reports, and Feature Exceptions, see page 51
- Technical Support, see page 64

Related Documentation

These release notes should be used in conjunction with the OmniSwitch 6400 along with the associated manuals as listed below.

User manuals can be downloaded at:

http://www1.alcatel-lucent.com/enterprise/en/resource library/user manuals/

• OmniSwitch 6400 Series Getting Started guide

Describes the hardware and software procedures for getting an OmniSwitch 6400 Series switch up and running.

• OmniSwitch 6400 Series Hardware User Guide

Complete technical specifications and procedures for all OmniSwitch 6400 Series chassis, power supplies, and fans.

• OmniSwitch AOS Release 6 CLI Reference Guide

Complete reference to all CLI commands supported on the OmniSwitch. Includes syntax definitions, default values, examples, usage guidelines, and CLI-to-MIB variable mappings.

• OmniSwitch AOS Release 6 Network Configuration Guide

Includes network configuration procedures and descriptive information on all the major software features and protocols included in the base software package. Chapters cover Layer 2 information (Ethernet and VLAN configuration), Layer 3 information (routing protocols), security options (Authenticated Switch Access (ASA)), Quality of Service (QoS), link aggregation.

• OmniSwitch AOS Release 6 Series Switch Management Guide

Includes procedures for readying an individual switch for integration into a network. Topics include the software directory architecture, software rollback protections, authenticated switch access, managing switch files, system configuration, using SNMP, and using web management software (WebView).

• OmniSwitch AOS Release 6 Transceivers Guide

Includes SFP and XFP transceiver specifications and product compatibility information.

• Technical Tips, Field Notices

Contracted customers can visit our customer service website at: service.esd.alcatel-lucent.com.

System Requirements

Memory Requirements

- OmniSwitch 6400 Series Release 6.3.3.R01 requires 256 MB of SDRAM and 128MB of flash memory. This is the standard configuration shipped.
- Configuration files and the compressed software images—including web management software (WebView) images—are stored in the flash memory. Use the **show hardware info** command to deterine your SDRAM and flash memory.

OmniSwitch 6400 - UBoot/Miniboot and FPGA Requirements The software versions listed in this section are the minimum required, except where otherwise noted.

Release	UBoot/Miniboot	FPGA
6.3.3.277.R01	6.3.3.276.R01	OS6400-C24/P24 - 14 OS6400-C48/P48 - 11 OS6400-U24 - 10

OmniSwitch 6400 - Available Image Files

Image File	Base or Optional Software	Description
Gbase.img	Base	CMM Base
Gdiag.img	Base	CMM Diagnostics
Geni.img	Base	NI image for all Ethernet-type NIs
Gos.img	Base	CMM Operating System
Gsecu.img	Optional	CMM Security (AVLANS)

New Hardware Supported

OmniSwitch 6400 Chassis

OmniSwitch 6400-24

The OmniSwitch 6400-24 (OS6400-24) is a 24-port fixed stackable chassis with 20 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-24 contains one internal AC power supply, an external AC or DC Backup Power Supply (BPS) is also available.

OmniSwitch 6400-48

The OmniSwitch 6400-48 (OS6400-48) is a 48-port fixed stackable chassis with 44 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-48 contains one internal AC power supply, an external AC or DC Backup Power Supply (BPS) is also available.

OmniSwitch 6400-P24

The OmniSwitch 6400-P24 (OS6400-P24) is a 24-port Power over Ethernet (PoE) capable stackable chassis with 20 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-P24 supports up to two external 360W supplies for use as a primary and redundant power supply.

OmniSwitch 6400-P48

The OmniSwitch 6400-P48 (OS6400-P48) is a 48-port Power over Ethernet (PoE) capable stackable chassis with 44 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-P48 supports up to two external 360W supplies for use as a primary and redundant power supply.

OmniSwitch 6400-P24H

The OmniSwitch 6400-P24 (OS6400-P24) is a 24-port Power over Ethernet (PoE) capable stackable chassis with 20 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-P24 supports up to two external 510W supplies for use as a primary and redundant power supply.

OmniSwitch 6400-P48H

The OmniSwitch 6400-P48 (OS6400-P48) is a 48-port Power over Ethernet (PoE) capable stackable chassis with 44 RJ-45 ports configurable to 10/100/1000, four (4) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-P48 supports up to two external 510W supplies for use as a primary and redundant power supply.

OmniSwitch 6400-U24

The OmniSwitch 6400-U24 (OS6400-U24) is a 24-port AC powered fixed stackable chassis with 22 SFP fiber ports (100 or 1000BaseX), two (2) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-U24 contains one internal AC power supply, an external AC or DC Backup Power Supply (BPS) is also available.

OmniSwitch 6400-U24D

The OmniSwitch 6400-U24D (OS6400-U24D) is a 24-port DC powered fixed stackable chassis with 22 SFP fiber ports (100 or 1000BaseX), two (2) combo SFP/RJ45 ports, and two (2) 10 Gigabit Ethernet stacking ports. The OS6400-24 contains one internal DC power supply, an external AC or DC Backup Power Supply (BPS) is also available.

Note: USB port is not supported on the OS6400.

OmniSwitch 6400 Power Supplies

PS-126W-AC

The PS-126W-AC Power Supply provides system power and can be installed as a redundant power supply for the OS6400-24, OS6400-48, OS6400-U24 and OS6400-U24D switches.

PS-360W-AC

The PS-360W-AC Power Supply provides system and PoE power and can be installed as either a primary or redundant power supply for the OS6400-P24 and OS6400-P48.

PS-510W-AC

The PS-510W-AC Power Supply provides system and PoE power and can be installed as either a primary or backup power supply for the OS6400-P24H and OS6400-P48H.

PS-120W-DC

The PS-120W-DC Power Supply provides system power and can be installed as a redundant power supply for the OS6400-24, OS6400-U24 and OS6400-U24D switches.

OmniSwitch 6400 SFPs

SFP-GIG-EXTND

Extended 1000Base-SX Gigabit Ethernet optical transceiver (SFP MSA). Supports multimode fiber over 850nm wavelength with an LC connector. Reach of up to 2km on $62.5/125\mu m$ MMF and $50/125\mu m$ MMF.

SFP-GIG-LH40

1000Base-LH Gigabit Ethernet optical transceiver (SFP MSA). Supports single mode fiber over 1310nm wavelength with an LC connector. Typical reach of 40 m on $9/125\mu m$ SMF.

SFP-GIG-LH70

1000Base-LH Gigabit Ethernet optical transceiver (SFP MSA). Supports single mode fiber over 1550nm wavelength with an LC connector. Typical reach of 70 km on 9/125µm SMF.

SFP-GIG-LX

1000Base-LX Gigabit Ethernet optical transceiver (SFP MSA). Supports single mode fiber over 1310nm wavelength with an LC connector. Typical reach of 10km on 9/125µm SMF.

SFP-GIG-SX

1000Base-SX Gigabit Ethernet optical transceiver (SFP MSA). Supports multimode fiber over 850nm wavelength with an LC connector. Typical reach of 300m on $62.5/125\mu m$ MMF or 550m on $50/125\mu m$ MMF.

SFP-GIG-T

1000Base-T Gigabit Ethernet Transceiver (SFP MSA) - Supports category 5, 5E, and 6 copper cabling up to 100m. SFP works at 1000 Mbit/s speed and full-duplex mode. Supports 10/100/1000 Mbit/s as well when combined with OS6400-U24.

SFP-100-LC-MM

100Base-FX Ethernet optical transceiver (SFP MSA). Supports multimode fiber over 1310nm wavelength with an LC connector. Typical reach of 300m on 62.5/125μm and 550m on 50/125μm

SFP-100-LC-SM15

100Base-FX Ethernet optical transceiver (SFP MSA). Supports single mode fiber over 1310nm wavelength with an LC connector. Typical reach of 15km on 9/125µm SMF.

SFP-100-LC-SM40

100Base-FX Ethernet optical transceiver (SFP MSA). Supports single mode fiber over 1310nm wavelength with an LC connector. Typical reach of 40km on $9/125\mu m$ SMF.

SFP-Gig-BX-U

1000Base-BX Ethernet transceiver with an LC type connector. This bi-directional transceiver is designed for use over single-mode fiber on a single strand link up to 10km. Transmits at 1310nm and receives at 1490nm wavelengths.

SFP-GIG-BX-D

1000Base-BX SFP transceiver with an LC type connector. This bi-directional transceiver is designed for use over single-mode fiber on a single strand link up to 10km. Transmits at 1490nm and receives at 1310nm waveengths.

SFP-100-BX20LT

100Base-BX SFP transceiver with an SC type interface. This bi-directional transceiver is designed for use over single mode fiber on a single strand link up to 20km point-to-point. This transceiver is normally used in the central office (OLT). Transmits at 1550nm and receives at 1310nm wavelengths.

SFP-100-BX20NU

100Base-BX SFP transceiver with an SC type interface. This bi-directional transceiver is designed for use over single mode fiber on a single strand link up to 20km point-to-point. This transceiver is normally used in the client (ONU). Transmits at 1310nm and receives at 1550nm wavelengths.

New Software Features

The following software features are included with the 6.3.3.R01 release, subject to the feature exceptions and problem reports described later in these release notes:

Feature/Enhancement Summary

Feature	Platform	Software Package
802.1ab	OS6400	base
802.1Q	OS6400	base
802.1x Multiple Client Support	OS6400	base
802.1x Device Classification (Access Guardian)	OS6400	base
Mac Authentication for 802.1x Supplicants	OS6400	base
Access Control Lists (ACLs)	OS6400	base
Access Control Lists (ACLs) for IPv6	OS6400	base
L4 ACLs over IPv6	OS6400	base
ACL & Layer 3 Security	OS6400	base
ACL Manager (ACLMAN)	OS6400	base
ARP Defense Optimization	OS6400	base
ARP Poisoning Detection	OS6400	base
Authenticated Switch Access	OS6400	base
Partitioned Switch Management	OS6400	base
Account & Password Policies	OS6400	base
Authenticated VLANs	OS6400	base
Command Line Interface (CLI)	OS6400	base
DHCP Relay	OS6400	base
Per-VLAN DHCP Relay		
DHCP Option-82	OS6400	base
DHCP Snooping	OS6400	base
L2 DHCP Snooping	OS6400	base
Option-82 Data Insertion Format	OS6400	base
DNS Client	OS6400	base
Dynamic VLAN Assignment (Mobility)	OS6400	base
End User Partitioning	OS6400	base
Ethernet Interfaces	OS6400	base
Ethernet OAM	OS6400	base
Flood/Storm Control	OS6400	base
Flow Control (802.3x)	OS6400	base
Generic Routing Encapsulation (GRE)	OS6400	base
GVRP	OS6400	base
Health Statistics	OS6400	base
HTTP/HTTPS Port Configuration	OS6400	base
Interswitch Protocols (AMAP)	OS6400	base
IPv4 Routing	OS6400	base

Feature	Platform	Software Package
31-bit Network Mask Support	OS6400	base
IPv6 Routing	OS6400	base
IPv6 Client and/or Server Support	OS6400	base
IP DoS Filtering	OS6400	base
IPv4 Multicast Switching (IPMS)	OS6400	base
IPv6 Multicast Switching (MLD)	OS6400	base
IPv4 Multicast Switching (Proxying)	OS6400	base
IPv6 Multicast Switching (Proxying)	OS6400	base
IP MC VLAN (Multiple Sender Ports)	OS6400	base
IP Multinetting	OS6400	base
IP-IP Tunneling	OS6400	base
IP Route Map Redistribution	OS6400	base
IPX Routing	OS6400	base
Learned Port Security (LPS)	OS6400	base
Learned MAC Address Notification	OS6400	base
Link Aggregation (static & 802.3ad)	OS6400	base
Mac Retention	OS6400	base
NTP Client	OS6400	base
Policy Server Management	OS6400	base
Policy Based Routing (Permanent Mode)	OS6400	base
Port Mapping	OS6400	base
Port Mirroring (128:1)	OS6400	base
Port Monitoring	OS6400	base
Power over Ethernet (PoE)	OS6400	base
Quality of Service (QoS)	OS6400	base
Auto-Qos Prioritization of IP Phone Traffic	OS6400	base
Auto-Qos Prioritization of NMS Traffic	OS6400	base
DSCP Range Condition	OS6400	base
Policy Based Mirroring	OS6400	base
Port-based Ingress Limiting	OS6400	base
Redirection Policies (Port and Link Agg)	OS6400	base
Quarantine Manager and Remediation	OS6400	base
Remote Port Mirroring	OS6400	base
RIPv1/RIPv2	OS6400	base
ECMP RIP Support	OS6400	base
RIPng	OS6400	base
RMON	OS6400	base
Router Discovery Protocol (RDP)	OS6400	base
Routing Protocol Preference	OS6400	base
Secure Copy (SCP)	OS6400	base
Secure Shell (SSH)	OS6400	base
Server Load Balancing (SLB)	OS6400	base
SSH Public Key Authentication	OS6400	base
sFlow	OS6400	base
SNMP	OS6400	base
Source Learning	OS6400	base

Feature	Platform	Software Package
L2 Static Multicast Address	OS6400	base
Software Rollback	OS6400	base
Spanning Tree	OS6400	base
802.1Q 2005 (MSTP)	OS6400	base
Automatic VLAN Containment (AVC)	OS6400	base
PVST+	OS6400	base
RRSTP	OS6400	base
Switch Logging	OS6400	base
Syslog to Multiple Hosts	OS6400	base
Trivial File Transfer Protocol (TFTP) Client	OS6400	base
Text File Configuration	OS6400	base
UDLD	OS6400	base
User Definable Loopback Interface	OS6400	base
User Network Profiles	OS6400	base
VLANs	OS6400	base
VLAN Stacking and Translation	OS6400	base
VLAN Stacking Eservices	OS6400	base
Web-Based Management (WebView)	OS6400	base

Feature Descriptions

802.1AB with MED Extensions

IEEE 802.1AB (2005) is the latest version for the standards based connectivity discovery protocol. The purpose of the IEEE standard 802.1AB for Link Layer Discovery Protocol (LLDP) is to provide support for network management software, such as OmniVista, that deals with topology discovery. Switches that are compliant with 802.1AB use TLV (Time, Length, Value) frames to exchange information with neighboring devices and maintain a database of the information exchanged. The Link Layer Discovery Protocol-Media Endpoint Discover (LLDP-MED) is designed to extend IEEE 802.1AB functionality to exchange information such as VLANs and power capabilities.

802.1Q

802.1Q is an IEEE standard for sending frames through the network tagged with VLAN identification. 802.1Q tagging is the IEEE version of VLANs. It is a method of segregating areas of a network into distinct VLANs. By attaching a label, or tag, to a packet, it can be identified as being from a specific area or identified as being destined for a specific area.

When a port is enabled to accept tagged traffic, by default both 802.1Q tagged and untagged traffic is automatically accepted on the port. Configuring the port to accept only tagged traffic is also supported.

802.1x Device Classification (Access Guardian)

In addition to the authentication and VLAN classification of 802.1x clients (supplicants), this implementation of 802.1x secure port access extends this type of functionality to non-802.1x clients (non-supplicants). To this end device classification policies are introduced to handle both supplicant and non-supplicant access to 802.1x ports.

Supplicant policies use 802.1x authentication via a remote RADIUS server and provide alternative methods for classifying supplicants if the authentication process either fails or does not return a VLAN ID.

Non-supplicant policies use MAC authentication via a remote RADIUS server or can bypass authentication and only allow strict assignment to specific VLANs. MAC authentication verifies the source MAC address of a non-supplicant device via a remote RADIUS server. Similar to 802.1x authentication, the switch sends RADIUS frames to the server with the source MAC address embedded in the username and password attributes

The number of possible 802.1X users is 2K per system. This number is a total number of users that applies to all authenticated clients, such as AVLAN and 802.1X supplicants or non-supplicants. In addition the use of all authentication methods and Learned Port Security (LPS) on the same port is supported.

Classification of both supplicant and non-supplicant devices using non-supplicant device classification policies is supported. As a result, MAC authentication is now applicable to both supplicant and non-supplicant devices.

Access Control Lists (ACLs)

Access Control Lists (ACLs) are Quality of Service (QoS) policies used to control whether or not packets are allowed or denied at the switch or router interface. ACLs are sometimes referred to as filtering lists. ACLs are distinguished by the kind of traffic they filter. In a QoS policy rule, the type of traffic is specified in the policy condition. The policy action determines whether the traffic is allowed or denied. In general, the types of ACLs include:

- Layer 2 ACLs—for filtering traffic at the MAC layer. Typically uses MAC addresses or MAC groups for filtering.
- Layer 3/4 ACLs—for filtering traffic at the network layer. Typically uses IP addresses or IP ports for filtering; note that IPX filtering is not supported.
- Multicast ACLs—for filtering IGMP traffic.

Access Control Lists (ACLs) for IPv6

The following QoS policy conditions are available for configuring ACLs to filter IPv6 traffic:

source ipv6
destination ipv6
ipv6
nh (next header)
flow-label
source tcp port
destination tcp port
source udp port
destination udp port

Note the following when using IPv6 ACLs:

- Trusted/untrusted behavior is the same for IPv6 traffic as it is for IPv4 traffic.
- IPv6 policies do not support the use of network groups, service groups, map groups, or MAC groups.
- IPv6 multicast policies are not supported.
- Anti-spoofing and other UserPorts profiles/filters do not support IPv6.
- The default (built-in) network group, "Switch", only applies to IPv4 interfaces. There is no such group for IPv6 interfaces.
- IPv6 ACLs are not supported on A1 NI modules. Use the **show ni** command to verify the version of the NI module. Contact your Alcatel-Lucent support representative if you are using A1 boards.

ACL & Layer 3 Security

The following additional ACL features are available for improving network security and preventing malicious activity on the network:

- **ICMP drop rules**—Allows condition combinations in policies that will prevent user pings, thus reducing DoS exposure from pings. Two condition parameters are also available to provide more granular filtering of ICMP packets: **icmptype** and **icmpcode**.
- TCP connection rules—Allows the determination of an *established* TCP connection by examining TCP flags found in the TCP header of the packet. Two condition parameters are available for defining a TCP connection ACL: **established** and **tcpflags**.
- Early ARP discard—ARP packets destined for other hosts are discarded to reduce processing overhead and exposure to ARP DoS attacks. No configuration is required to use this feature, it is always available and active on the switch. Note that ARPs intended for use by a local subnet, AVLAN, and VRRP are *not* discarded.
- UserPorts—A port group that identifies its members as user ports to prevent spoofed IP traffic. When a port is configured as a member of this group, packets received on the port are dropped if they contain a source IP network address that does not match the IP subnet for the port.
- UserPorts Profile—In addition to spoofed traffic, it is also possible to configure a global UserPorts profile to specify additional types of traffic, such as BPDU, RIP, OSPF, DVMRP, PIM, DHCP server response packets and DNS, to monitor on user ports. The UserPorts profile also determines whether user ports will filter the unwanted traffic or will administratively shutdown when the traffic is received. Note that this profile only applies to those ports that are designated as members of the UserPorts port group.
- **DropServices**—A service group that improves the performance of ACLs that are intended to deny packets destined for specific TCP/UDP ports. This group only applies to ports that are members of the UserPorts group. Using the DropServices group for this function minimizes processing overhead, which otherwise could lead to a DoS condition for other applications trying to use the switch.

ACL Manager

The Access Control List Manager (ACLMAN) is a function of the Quality of Service (QoS) application that provides an interactive shell for using common industry syntax to create ACLs. Commands entered using the ACLMAN shell are interpreted and converted to Alcatel-Lucent CLI syntax that is used for creating QoS filtering policies.

This implementation of ACLMAN also provides the following features:

- Importing of text files that contain common industry ACL syntax.
- Support for both standard and extended ACLs.
- Creating ACLs on a single command line.
- The ability to assign a name, instead of a number, to an ACL or a group of ACL entries.
- Sequence numbers for named ACL statements.

- Modifying specific ACL entries without having to enter the entire ACL each time to make a change.
- The ability to add and display ACL comments.
- ACL logging extensions to display Layer 2 through 4 packet information associated with an ACL.

ARP Defense Optimization

This feature enchances how the OmniSwitch can respond to an ARP DoS attack by not adding entires to the forwarding table until the net hop ARP entry can be resolved.

ARP Poisoning Detection

This feature detects the presence of an ARP-Poisoning host on the network using configured restricted IP addresses for which the switch, on sending an ARP request, should not get back an ARP response. If an ARP response is received, the event is logged and the user is alerted using an SNMP trap.

By default ARP requests are not added to the ARP cache. Only router solicited ARP requests will be added to the cache

Authenticated Switch Access

Authenticated Switch Access (ASA) is a way of authenticating users who want to manage the switch. With authenticated access, all switch login attempts using the console or modem port, Telnet, FTP, SNMP, or HTTP require authentication via the local user database or via a third-party server. The type of server may be an authentication-only mechanism or an authentication, authorization, and accounting (AAA) mechanism.

AAA servers are able to provide authorization for switch management users as well as authentication. (They also may be used for accounting.) User login information and user privileges may be stored on the servers. The following AAA servers are supported on the switch:

- Remote Authentication Dial-In User Service (RADIUS). Authentication using this type of server was certified with Funk/Juniper Steel Belted RADIUS server (any industry standard RADIUS server should work).
- Lightweight Directory Access Protocol (LDAP).
- Terminal Access Controller Access Control System (TACACS+).

Authentication-only servers are able to authenticate users for switch management access, but authorization (or what privileges the user has after authenticating) are determined by the switch. Authentication-only servers cannot return user privileges to the switch. The authentication-only server supported by the switch is ACE/Server, which is a part of RSA Security's SecurID product suite. RSA Security's ACE/ Agent is embedded in the switch.

By default, switch management users may be authenticated through the console port via the local user database. If external servers are configured for other management interfaces but the servers become unavailable, the switch will poll the local user database for login information if the switch is configured for local checking of the user database. The database includes information about whether or not a user is able to log into the switch and what kinds of privileges or rights the user has for managing the switch.

Partitioned Switch Management - A user account includes a login name, password, and user privileges. The privileges determine whether the user has read or write access to the switch, and which command domains and command families the user is authorized to execute on the switch. The privileges are sometimes referred to as *authorization*; the designation of particular command families or domains for user access is sometimes referred to as *partitioned management*.

Account & Password Policies - This feature allows a switch administrator to configure password policies for password creation and management. The administator can configure how often a password must be changed, lockout settings for failed attempts, password complexity, history, and age as well as other account management settings.

Authenticated VLANs

Authenticated VLANs control user access to network resources based on VLAN assignment and a user log-in process; the process is sometimes called user authentication or Layer 2 Authentication. (Another type of security is device authentication, which is set up through the use of port-binding VLAN policies or static port assignment.)

The total number of possible AVLAN users is 2K per system. This number is a total number of users that applies to all authenticated clients, such as AVLAN and 802.1X supplicants or non-supplicants. The Omniswitch supports the use of all authentication methods and Learned Port Security (LPS) on the same port.

Layer 2 Authentication is different from Authenticated Switch Access, which is used to grant individual users access to manage the switch.

AVLAN web authentication is compatible with the following:

- Windows XP IE6, IE7, FireFox2, FireFox3, Netscape 9.0 and Java 1.6.
- Windows Vista IE7, FireFox3, Netscape 9.0 and Java 1.6.
- MAC OS 10.5 Safari 3.0.4 and Java 12.0.

Command Line Interface (CLI)

Alcatel-Lucent's command line interface (CLI) is a text-based configuration interface that allows you to configure switch applications and to view switch statistics. Each CLI command applicable to the switch is defined in the CLI Reference guide. All command descriptions listed in the Reference Guide include command syntax definitions, defaults, usage guidelines, example screen output, and release history.

The CLI uses single-line text commands that are similar to other industry standard switch interfaces.

DHCP Relay

DHCP Relay allows you to forward DHCP broadcast requests to configurable DHCP server IP address in a routing environment.

DHCP Relay is configured using the IP helper set of commands.

Preboot Execution Environment (PXE) support was enabled by default in previous releases. Note that in this release, it is disabled by default and is now a user-configurable option using the ip helper pxe-support command.

Per-VLAN DHCP Relay - It is possible to configure multiple DHCP relay (ip helper) addresses on a pervlan basis. For the Per- VLAN service, identify the number of the VLAN that makes the relay request. You may identify one or more server IP addresses to which DHCP packets will be sent from the specified VLAN. Both standard and per VLAN modes are supported.

DHCP Relay Agent Information Option

The DHCP Option-82 feature enables the relay agent to insert identifying information into client-originated DHCP packets before the packets are forwarded to the DHCP server. The implementation of this feature is based on the functionality defined in RFC 3046.

When DHCP Option-82 is enabled, communications between a DHCP client and a DHCP server are authenticated by the relay agent . To accomplish this task, the agent adds Option-82 data to the end of the options field in DHCP packets sent from a client to a DHCP server.

If the relay agent receives a DHCP packet from a client that already contains Option-82 data, the packet is dropped by default. However, it is possible to configure a DHCP Option-82 policy that directs the relay agent to drop, keep, or replace the existing Option-82 data and then forward the packet to the server.

DHCP Snooping

DHCP Snooping improves network security by filtering DHCP packets received from devices outside the network and building and maintaining a binding table (database) to log DHCP client access information. There are two levels of operation available for the DHCP Snooping feature: switch level or VLAN level.

To identify DHCP traffic that originates from outside the network, DHCP Snooping categorizes ports as either trusted or untrusted. A port is trusted if it is connected to a device inside the network, such as a DHCP server. A port is untrusted if it is connected to a device outside the network, such as a customer switch or workstation. The port trust mode is also configurable through the CLI.

Additional DHCP Snooping functionality includes the following:

- IP Source Filtering—Restricts DHCP Snooping port traffic to only packets that contain the client source MAC address and IP address obtained from the DHCP lease information. The DHCP Snooping binding table is used to verify the client lease information for the port that is enabled for IP source filtering.
- Rate Limiting—Limits the number of DHCP packets on a port. This functionality is provided using the QoS application to configure ACLs for the port.
- User-configurable Option 82 Suboption Format—Allows the user to specify the type of information (switch base MAC address, system name, or user-defined string) that is inserted into the Circuit ID and Remote ID suboptions of the Option-82 field. This functionality only applies when DHCP Snooping Option-82 Data Insertion is enabled.

DHCP Snooping - Layer 2

By default, DHCP broadcasts are flooded on the default VLAN for the client/server port. If the DHCP client and server are both members of the same VLAN domain, the broadcast packets from these sources are bridged as Layer 2 traffic and not processed by the relay agent.

The Omnswitch provides enhancements to DHCP Snooping to allow application of DHCP Snooping functionality to bridged DHCP client/server broadcasts without using the relay agent or requiring an IP interface on the client/server VLAN.

When DHCP Snooping is enabled at the switch level or for an individual VLAN, DHCP Snooping functionality is automatically applied to Layer 2 traffic. When DHCP Snooping is disabled at the switch level or disabled on the last VLAN to have snooping enabled on the switch, DHCP Snooping functionality is no longer applied to Layer 2 or Layer 3 traffic.

DNS Client

A Domain Name System (DNS) resolver is an internet service that translates host names into IP addresses. Every time you enter a host name, a DNS service must look up the name on a server and resolve the name to an IP address. You can configure up to three domain name servers that will be queried in turn to resolve the host name. If all servers are queried and none can resolve the host name to an IP address, the DNS fails. If the DNS fails, you must either enter an IP address in place of the host name or specify the necessary lookup tables on one of the specified servers.

Dynamic VLAN Assignment (Mobility)

Dynamic assignment applies only to mobile ports and requires the additional configuration of VLAN rules. When traffic is received on a mobile port, the packets are examined to determine if their content matches any VLAN rules configured on the switch. Rules are defined by specifying a port, MAC address, protocol, network address, binding, or DHCP criteria to capture certain types of network device traffic. It is also possible to define multiple rules for the same VLAN. A mobile port is assigned to a VLAN if its traffic matches any one VLAN rule.

End User Partitioning (EUPM)

EUPM is used for customer login accounts that are configured with end-user profiles (rather than functional privileges specified by partitioned management). Profiles specify command areas as well as VLAN and/or port ranges to which the user has access. These profiles are typically used for end users rather than network administrators.

Ethernet Interfaces

Ethernet and Gigabit Ethernet port software is responsible for a variety of functions that support Ethernet and Gigabit Ethernet. These functions include initialization of ports, notifying other software modules when a port goes down, configuration of basic line parameters, gathering of statistics for Ethernet and Gigabit Ethernet ports, and responding to administrative enable/disable requests.

Configurable parameters include: autonegotiation (copper ports 10/100/1000), trap port link messages, flood control, line speed, duplex mode, inter-frame gap, resetting statistics counters, and maximum and peak flood rates.

Flood control is configurable on ingress interfaces (flood rate and including/excluding multicast).

Ethernet OAM

Ethernet OAM (Operation, Administration, and Maintenance) provides service assurance over a

converged Ethernet network. Ethernet OAM focuses on two main areas that are most in need by service providers and are rapidly evolving in the standards bodies: Service OAM and Link OAM. These two OAM protocols have unique objectives but are complementary to each other. Service OAM provides monitoring

and troubleshooting of end-to-end Ethernet service instances, while Link OAM allows a provider to monitor and troubleshoot an individual Ethernet link. The end-to-end service management capability is the most important aspect of Ethernet OAM for service providers.

The IEEE 802.1ag draft 7.0 standard is supported.

Generic UDP Relay

In addition to BOOTP/DHCP relay, generic UDP relay is available. Using generic UDP relay, traffic destined for well-known service ports (e.g., NBNS/NBDD, DNS, TFTP, and TACACS) or destined for a user-defined service port can be forwarded to a maximum of 256 VLANs on the switch.

Generic Routing Encapsulation

Generic Routing Encapsulation (GRE) is a tunneling protocol that can encapsulate a wide variety of protocol packet types inside IP tunnels. GRE is used to create a virtual point-to-point link between routers at remote points in a network. This feature supports the creation, administration, and deletion of IP interfaces whose underlying virtual device is a GRE tunnel.

GVRP

The GARP VLAN Registration Protocol (GVRP), a protocol compliant with 802.1Q, dynamically learns and further propagates VLAN membership information across a bridged network. GVRP dynamically maintains and updates the registration and de-registration of VLANs and prunes unnecessary broadcast and unicast traffic. Through propagation of GVRP information, a device is continuously able to update its knowledge of the set of VLANs that currently have active members and of the ports through which those members can be reached.

Using GVRP, a single switch is manually configured with all the desired VLANs for the network, and all other switches on the network dynamically learn those VLANs. An end station can be plugged into any switch and can be connected to its desired VLAN. However, for end stations to make use of GVRP, they need Network Interface Cards (NIC) aware of GVRP. A trap will be sent if the number of dynamic VLANs exceeds the maximum threshold configured for GVRP.

Health Statistics

To monitor resource availability, the NMS (Network Management System) needs to collect significant amounts of data from each switch. As the number of ports per switch (and the number of switches) increases, the volume of data can become overwhelming. The Health Monitoring feature can identify and monitor a switch's resource utilization levels and thresholds, improving the efficiency in data collection.

Health Monitoring provides the following data to the NMS:

- Switch-level input/output, memory and CPU utilization levels
- Module-level and port-level input/output utilization levels
- For each monitored resource, the following variables are defined:
- Most recent utilization level (percentage)
- Average utilization level over the last minute (percentage)
- Average utilization level over the last hour (percentage)
- Maximum utilization level over the last hour (percentage)
- Threshold level

Additionally, Health Monitoring provides the capacity to specify thresholds for the resource utilization levels it monitors, and generates traps based on the specified threshold criteria.

HTTP/HTTPS Port Configuration

The default HTTP port and the default Secure HTTP (HTTPS) port can be configured for the embedded Web server in the switch.

IP/IP Tunneling

The IP/IP tunneling feature allows IP traffic to be tunneled through an IP network. This feature can be used to establish connctivity between remote IP networks using an intermediate IP network such as the Internet.

IP Multicast VLAN

The IP Multicast VLAN feature provides the ability to configure specific VLANs that are dedicated to distributing multicast traffic. These distribution VLANs connect to the nearest multicast router and support multicast traffic only.

IP Multicast VLANs are supported in both the enterprise environment and the VLAN Stacking environment. The ports are separately classified as VLAN stacking ports or as legacy ports (Fixed ports/Tagged Ports). To ascertain that data flow is limited to either the VLAN Stacking domain or the enterprise domain, VLAN Stacking ports must be members of only the VLAN Stacking VLANs, while the normal legacy ports must be members of only enterprise mode VLANs. Multiple sender ports are supported.

Interswitch Protocol (AMAP)

Alcatel-Lucent Interswitch Protocols (AIP) are used to discover adjacent switches and retain mobile port information across switches. By default, AMAP is enabled.

Alcatel-Lucent Mapping Adjacency Protocol (AMAP) is used to discover the network topology of Alcatel-Lucent switches in a particular installation. Using this protocol, each switch determines which switches are adjacent to it by sending and responding to Hello update packets. For the purposes of AMAP, adjacent switches are those that:

- Have a Spanning Tree path between them
- Do not have any switch between them on the Spanning Tree path that has AMAP enabled

IPv4 Support

Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing and control information that allow packets to be forwarded on a network. IP is the primary network-layer protocol in the Internet protocol suite. Along with the Transmission Control Protocol (TCP), IP represents the heart of the Internet protocols. IP is associated with several Layer 3 and Layer 4 protocols. These protocols are built into the base code loaded on the switch and they include:

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)
- Bootstrap Protocol (BOOTP)/Dynamic Host Configuration Protocol (DHCP)
- Simple Network Management Protocol (SNMP)
- Telnet client and server
- File Transfer Protocol (FTP) client and server
- Ping
- Traceroute
- Address Resolution Protocol (ARP)
- Internet Control Message Protocol (ICMP)
- RIP I / RIP II
- ECMP
- Static routes

The base IP software allows you to configure an IP router interface, static routes, a default route, the Address Resolution Protocol (ARP), the router primary address, the router ID, the Time-to-Live (TTL) Value, IP-directed broadcasts, and the Internet Control Message Protocol (ICMP). In addition, this software allows you to trace an IP route, display Transmission Control Protocol (TCP) information, and display User Datagram Protocol (UDP) information.

The switch operates only in single MAC router mode. In this mode, each router interface is assigned the same MAC address, which is the base chassis MAC address for the switch.

31-Bit Network Mask Support – Configuring a 31-bit netmask is supported to allow for a point-to-point Ethernet network between two routers.

IPv6 Support

IPv6 (documented in RFC 2460) is designed as a successor to IPv4 and is supported on the OmniSwitch 6400. The changes from IPv4 to IPv6 fall primarily into the following categories:

- Address size increased from 32 bits (IPv4) to 128 bits (IPv6)
- Dual Stack IPv4/IPv6
- ICMPv6
- Neighbor Discovery
- Stateless Autoconfiguration
- RIPng
- Static Routes
- Tunneling: Configured and 6-to-4 dynamic tunneling
- Ping6
- Traceroute6
- DNS client using Authority records
- Telnetv6 Client and server
- File Transfer Protocol (FTPv6) Client and server
- SSHv6 Client and Server

OmniSwitch 6400 switches support hardware-based IPv6 routing.

Note that the switch operates only in single MAC router mode. In this mode, each router VLAN is assigned the same MAC address, which is the base chassis MAC address for the switch

IP DoS Filtering

By default, the switch filters the following denial of service (DoS) attacks, which are security attacks aimed at devices that are available on a private network or the Internet:

- ARP Flood Attack
- Invalid IP Attack
- Multicast IP and MAC Address Mismatch
- Ping Overload
- Packets with loopback source IP address

IP Multicast Switching (IPMS)

IP Multicast Switching is a one-to-many communication technique employed by emerging applications such as video distribution, news feeds, conferencing, netcasting, and resource discovery (OSPF, RIP2, and BOOTP). Unlike unicast, which sends one packet per destination, multicast sends one packet to all devices in any subnetwork that has at least one device requesting the multicast traffic. Multicast switching also requires much less bandwidth than unicast techniques and broadcast techniques since the source hosts only send one data stream to the ports on which destination hosts that request it are attached.

Destination hosts signal their intent to receive a specific multicast stream by sending a request to do so to a nearby switch using Internet Group Management Protocol (IGMP). The switch then learns on which ports multicast group subscribers are attached and can intelligently deliver traffic only to the respective ports. This mechanism is often referred to as *IGMP snooping* (or *IGMP gleaning*). Alcatel-Lucent's implementation of IGMP snooping is called IP Multicast Switching (IPMS). IPMS allows an OmniSwitch to efficiently deliver multicast traffic in hardware at wire speed.

Both IGMP version 3 (IGMPv3), which handles forwarding by source IP address and IP multicast destination, and IGMP version 2 (IGMPv2), which handles forwarding by IP multicast destination address only, are supported. IPMS is supported on IPv4 and IPv6 (MLD) on the OmniSwitch 6400.

IP Multicast Switching (IPMS) - Proxying

IP multicast proxying and configuring the IGMP and MLD unsolicited report interval are available with this implementation of IPMS. Proxying enables the aggregation of IGMP and MLD group membership information and the reduction in reporting queriers. The unsolicited report interval refers to the time period in which to proxy any changed IGMP membership state.

IP Multinetting

IP multinetting allows multiple subnets to coexist within the same VLAN domain. This implementation of the multinetting feature allows for the configuration of up to eight IP interfaces per a single VLAN. Each interface is configured with a different subnet.

IP Route Map Redistribution

Route map redistribution provides the ability to control which routes from a source protocol are learned and distributed into the network of a destination protocol. A route map consists of one or more user-defined statements that can determine which routes are allowed or denied access to the network. In addition, a route map may also contain statements that modify route parameters before they are redistributed.

Redistribution is configured by specifying a source and destination protocol and the name of an existing route map. Criteria specified in the route map is applied to routes received from the source protocol.

IPX Routing

The Internet Packet Exchange (IPX) protocol, developed by Novell for NetWare, is a Layer 3 protocol used to route packets through IPX networks. (NetWare is Novell's network server operating system.) This implementation of IPX routing is software based with limited performance.

IPX specifies a connectionless datagram similar to the IP packet of TCP/IP networks. An IPX network address consists of two parts: a network number and a node number. The IPX network number is assigned by the network administrator. The node number is the Media Access Control (MAC) address for a network interface in the end node.

Learned Port Security (LPS)

Learned Port Security (LPS) provides a mechanism for authorizing source learning of MAC addresses on 10/100/1000, Gigabit, and Gigabit Ethernet ports. Using LPS to control source MAC address learning provides the following benefits:

- A configurable source learning time limit that applies to all LPS ports.
- A configurable limit on the number of MAC addresses allowed on an LPS port.
- Dynamic configuration of a list of authorized source MAC addresses.
- Static configuration of a list of authorized source MAC addresses.
- Two methods for handling unauthorized traffic: Shutting down the port or only blocking traffic that violates LPS criteria.
- A configurable limit to the number of filtered MAC addresses allowed on an LPS port. Conversion of dynamically learned MAC addresses to static MAC address entries.
- Support for all authentication methods and LPS on the same switch port.

Note that LPS is not configurable on link aggregate ports.

Learned MAC Address Notification - The LPS feature enables the OmniSwitch to generate an SNMP trap when a new bridged MAC address is learned on an LPS port. A configurable trap threshold number is provided to determine how many MAC addresses are learned before such traps are generated for each MAC address learned thereafter. Trap contents includes identifying information about the MAC, such as the address itself, the corresponding IP address, switch identification, and the slot and port number on which the MAC was learned.

Link Aggregation (static & 802.3ad)

Alcatel-Lucent's link aggregation software allows you to combine several physical links into one large virtual link known as a link aggregation group. Using link aggregation can provide the following benefits:

- **Scalability**. You can configure up to 32 link aggregation groups that can consist of 2, 4, or 8 Ethernetports.
- **Reliability**. If one of the physical links in a link aggregate group goes down, the link aggregate group can still operate.
- **Interoperability with Legacy Switches**. Static link aggregation can interoperate with OmniChannel on legacy switches.

Alcatel-Lucent's link aggregation software allows you to configure the following two different types of link aggregation groups:

- Static link aggregate groups
- Dynamic (802.3ad) link aggregate groups

MAC Retention

The MAC Retention functionality is implemented to enhance Smart Continuous Switching for stackable products by retaining the base MAC address of the primary stack element during a takeover. As a result, both L2 and L3 traffic as well as the associated control protocols (e.g. routing protocols, spanning tree)

will be minimally affected during takeover. The MAC retention feature also has added enhancements for avoiding duplicate MAC scenarios. If the primary element is not returned to the stack after a preset time, a trap will be generated indicating the possibility of a duplicate MAC. A duplicate MAC scenario would occur if the primary element was put back into the network since the stack has retained the primary element's MAC address.

NTP Client

The Network Time Protocol (NTP) is used to synchronize the time of a computer client or server to another server or reference time source, such as a radio or satellite receiver. It provides client time accuracies within half a second on LANs and WANs relative to a primary server synchronized to Universal Coordinated Time (UTC) (via a Global Positioning Service receiver, for example).

Policy Server Management

Policy servers use Lightweight Directory Access Protocol (LDAP) to store policies that are configured through Alcatel-Lucent's PolicyView network management application. PolicyView is an OmniVista application that runs on an attached workstation.

The Lightweight Directory Access Protocol (LDAP) is a standard directory server protocol. The LDAP policy server client in the switch is based on RFC 2251. Currently, PolicyView is supported for policy management.

Port Mapping (Private VLANs)

Port Mapping is a security feature that controls peer users from communicating with each other. A Port Mapping session comprises a session ID and a set of user ports and/or a set of network ports. User ports within a session cannot communicate with each other and can only communicate via network ports. In a Port Mapping session with user port set A and network port set B, ports in set A can only communicate with ports in set B. If set B is empty, ports in set A can communicate with rest of the ports in the system.

A port mapping session can be configured in unidirectional or bidirectional mode. In the unidirectional mode, the network ports can communicate with each other within the same session. In the bidirectional mode, the network ports cannot communicate with each other. Network ports of a unidirectional port mapping session can be shared with other unidirectional sessions, but cannot be shared with any sessions configured in bidirectional mode. Network Ports of different sessions can communicate with each other.

Port Mirroring

When Port Mirroring is enabled, the active "mirrored" port transmits and receives network traffic normally, and the "mirroring" port receives a copy of all transmit and receive traffic to the active port. You can connect an RMON probe or network analysis device to the mirroring port to see an exact duplication of traffic on the mirrored port without disrupting network traffic to and from the mirrored port.

Only one Port Mirroring session is supported. That session can be configured to a "N-to-1" session where up to 128 source ports can be mirrored to a single destination port.

Port Monitoring

The Port Monitoring feature allows you to examine packets to and from a specific Ethernet port (either ingress or egress). You can select to dump captured data to a file, which can be up to 140K. Once a file is captured, you can FTP it to a Protocol Analyzer or PC for viewing.

By default, the switch will create a data file called "pmonitor.enc" in flash memory. When the 140K limit is reached the switch will begin overwriting the data starting with the oldest captured data. However, you can configure the switch so it will not overwrite the data file. In addition, you can configure additional port monitoring files as long as you have enough room in flash memory. You cannot configure port mirroring and port monitoring on the same NI module.

Power over Ethernet (PoE)

The Power over Ethernet (PoE) software is supported on the OS6400-P24 and OS6400-P48 models. PoE provides inline power directly from the switch's Ethernet ports. From these RJ-45 ports the devices receive both electrical power and data flow. PoE detects power based on PSE devices and not on class.

PoE supports both IEEE 802.3af and non-IEEE 802.3af standards. The default and maximum inline power allotted for each port is 15400 Milliwatts. The redundant power supply for PoE is only for backup. If the primary power supply fails, then PoE can switch over seamlessly to the backup power supply.

Quality of Service (QoS)

Alcatel-Lucent's QoS software provides a way to manipulate flows coming through the switch based on user-configured policies. The flow manipulation (generally referred to as *Quality of Service* or *QoS*) may be as simple as allowing/denying traffic, or as complicated as remapping 802.1p bits from a Layer 2 network to ToS values in a Layer 3 network. QoS can support up to 2048 policies and it is hardware-based on the first packet. OmniSwitch 6400 switches support 8 queues per port.

QoS is implemented on the switch through the use of policies, created on the switch or stored in Policy-View. While policies may be used in many different network scenarios, there are several typical types:

- Basic QoS—includes traffic prioritization and bandwidth shaping
- 802.1p/ToS/DSCP—includes policies for marking and mapping
- Policy Based Routing (PBR)—includes policies for redirecting routed traffic
- Access Control Lists (ACLs)—ACLs are a specific type of QoS policy used for Layer 2, Layer 3/4, and multicast filtering.

Auto-Qos Prioritization for NMS Traffic - This feature can be used to enable the automatic prioritization of NMS traffic—SSH (TCP Port 22), Telnet (TCP Port 23), WebView (HTTP Port 80) and SNMP (TCP port 161)—that is destined for the switch. Prioritization maximizes access for NMS traffic and helps to reduce the potential for DoS attacks.

Note: When automatic NMS prioritization is enabled, QoS policies that specify priority are not applied to the NMS traffic. Other QoS policies, however, are applied to this type of traffic as usual. If a policy specifies rate limiting, then the policy with the lowest rate limiting value is applied.

Auto-Qos Prioritization on IP Phones - This feature is used to automatically enable the prioritization of IP phone traffic. The traffic can be assigned a priority value or, if set to trusted mode, the IP phone packet is used to determine the priority. IP phone traffic is identified by examining the source MAC address of the packet received on the port. If the source MAC falls within one of the Alcatel-Lucent ranges below, the Auto-QoS feature automatically sets the priority.

```
00-80-9F-54-xx-xx to 00-80-9F-64-xx-xx 00-80-9F-66-xx-xx to 00-80-9F-6F-xx-xx.
```

Third-party devices can be added to this group as well.

Note: When automatic NMS prioritization is enabled, QoS policies that specify priority are not applied to the NMS traffic. Other QoS policies, however, are applied to this type of traffic as usual.

DSCP Ranges – Configuring a range of DSCP values in a single QoS DSCP policy condition is now supported. This eliminates the need for multiple condition statements to configure multiple DSCP values for traffic classification. In addition, specifying a mask value is no longer required; QoS automatically calculates the appropriate mask value for each DSCP value specified.

Policy-Based Mirroring - This feature enhances the current port mirroring functionality on the OmniSwitch. It allows policies to be configured to determine when traffic should be mirrored based on policies rather than being restricted to a specified port. The following policies can be configured:

- Traffic between 2 ports
- Traffic from a source address
- Traffic to a destination address
- Traffic to/from an address
- Traffic between 2 addresses
- Traffic with a classification criterion based on packet contents other than addresses (for example, based on protocol, priority).
- VLAN-based mirroring mirroring of packets entering a VLAN.

Policy-Based Mirroring limitations:

- The policy mirror action must specify the same analyzer port for all policies in which the action is used.
- One policy-based mirroring session supported per switch.
- One port-based mirroring session supported per switch. Note that policy-based and port-base mirroring are both allowed on the same port at the same time.
- One remote port-based mirroring session supported per switch.
- One port-monitoring session supported per switch.

Policy Based Routing (Permanent Mode) - Policy Based Routing may be used to redirect traffic to a particular gateway based on source or destination IP address, source or destination network group, source or destination TCP/UDP port, a service or service group, IP protocol, or built-in source port group.

Traffic may be redirected to a particular gateway regardless of what routes are listed in the routing table. Note that the gateway address does not have to be on a directly connected VLAN; the address may be on any network that is learned by the switch.

Ingress and Egress Bandwidth Shaping - Bandwidth shaping is configured on a per port basis by specifying a maximum bandwidth value for ingress and egress ports. On the OmniSwitch 6400 switches, configuring minimum and maximum egress bandwidth is supported on a per COS queue basis for each port

Quarantine Manager and Remediation (QMR)

Quarantine Manager and Remediation (QMR) is a switch-based application that interacts with the OmniVista Quarantine Manager (OVQM) application to restrict the network access of quarantined clients and provide a remediation path for such clients to regain their network access. This functionality is driven by OVQM, but the following QMR components are configured through QoS CLI commands:

- **Quarantined MAC address group.** This is a reserved QoS MAC address group that contains the MAC addresses of clients that OVQM has quarantined and that are candidates for remediation.
- Remediation server and exception subnet group. This is a reserved QoS network group, called "alaExceptionSubnet", that is configured with the IP address of a remediation server and any subnets to which a quarantined client is allowed access. The quarantined client is redirected to the remediation server to obtain updates and correct its quarantined state.
- Remediation server URL. This is the URL for the remediation server. Note that this done in addition to specifying the server IP address in the "alaExceptionSubnet" network group.
- Quarantined Page. When a client is quarantined and a remediation server URL is not configured, QMR can send a Quarantine Page to notify the client of its quarantined state.
- HTTP proxy port group. This is a known QoS service group, called "alaHTTPProxy", that specifies the HTTP port to which quarantined client traffic is redirected for remediation. The default HTTP port used is TCP 80 and TCP 8080.

NOTE: Configuring QMR and QoS inner VLAN or inner 802.1p policies is mutually exclusive. QMR overlays the inner VLAN tag, thus creating a conflict with related QoS policies. This is also true with QMR and VLAN Stacking services.

QMR is activated when OVQM populates the MAC address group on the LDAP server with quarantined MAC addresses. If VLAN Stacking services or QoS inner VLAN/802.1p policies are configured on the switch, QMR will not activate.

NOTE: This feature is designed to work in conjunction with OmniVista's Quarantine Manager application. Refer to the OmniVista documentation for a detailed overview of the Quarantine Manager application.

Within OmniVista's Quarantine Manager application, if a MAC is added or removed from the quarantined group, or when an IP address is added or removed from the IP DA remediation, OmniVista will trigger the configured switches to perform a "recache" action. The switches will then query OmniVista's LDAP database and "pull" the addresses from the database, these addresses will then be added or removed from the switch's quarantined or remediation group.

Remote Port Mirroring (802.1Q Based)

This feature provides a remote port mirroring capability where traffic from a local port can be carried across the network to an egress port where a sniffer can be attached. This features makes use of an 802.1q tag to send the mirrored traffic over the network using tagged VLANs.

- There must not be any physical loop present in the remote port mirroring VLAN.
- Spanning Tree must be disabled for the remote port mirroring VLAN.
- BPDU mirroring will be disabled by default on all OS6400s.
- Source learning must be disabled or overridden on the ports belonging to the remote port mirroring VLAN on the intermediate and destination switches.
- On OS6400 switches the QoS redirect feature can be used to override source learning.

RIPv1/RIPv2

Routing Information Protocol (RIP) is a widely used Interior Gateway Protocol (IGP) that uses hop count as its routing metric. RIP-enabled routers update neighboring routers by transmitting a copy of their own routing table. The RIP routing table uses the most efficient route to a destination, that is, the route with the fewest hops and longest matching prefix.

OmniSwitch 6400 switches support RIP version 1 (RIPv1), RIP version 2 (RIPv2), and RIPv2 that is compatible with RIPv1. In addition, text key and MD5 authentication, on an interface basis, for RIPv2 is also supported. ECMP capability for up to 4 paths is also supported.

RIPng

The OmniSwitch 6400 switches support Routing Information Protocol next generation (RIPng) for IPv6 networks. RIPng is based on RIPv1/RIPv2 and is an Interior Gateway Protocol (IGP) best suited for moderate sized networks.

RIP Timer Configuration

- Update —The time interval between advertisement intervals.
- Invalid—The amount of time before an active route expires and transitions to the garbage state.
- Garbage—The amount of time an expired route remains in the garbage state before it is removed from the RIB.
- Holddown—The amount of time during which a route remains in the hold-down state.

Redirect Policies (Port and Link Aggregate)

Two policy action commands are available for configuring QoS redirection policies: **policy action redirect port** and **policy action redirect linkagg**. A redirection policy sends traffic that matches the policy to a specific port or link aggregate instead of the originally intended destination. This type of policy may use any condition; the policy action determines which port or link aggregate to which the traffic is sent.

RMON

Remote Network Monitoring (RMON) is an SNMP protocol used to manage networks remotely. *RMON probes* can be used to collect, interpret, and forward statistical data about network traffic from designated active ports in a LAN segment to an NMS (Network Management System) application for monitoring and analyzing without negatively impacting network performance. RMON software is fully integrated in the software to acquire statistical information.

This feature supports basic RMON 4 group implementation in compliance with RFC 2819, including the **Ethernet Statistics**, **History** (Control & Statistics), **Alarms**, and **Events** groups.

Router Discovery Protocol (RDP)

The Router Discovery Protocol (RDP) is an extension of ICMP that allows end hosts to discover routers on their networks. The implementation of RDP supports the router requirements as defined in RFC 1256. Using RDP, hosts attached to multicast or broadcast networks send solicitation messages when they start up. Routers respond to solicitation messages with an advertisement message that contains the router IP addresses. In addition, routers send advertisement messages when their RDP interface becomes active and then subsequently at random intervals.

Routing Protocol Preference

Specifying a routing protocol preference is supported. This is done by configuring a weight for each routing protocol (including static routes) to control which entry to prefer when two entries exist from different sources. By default, local routes always have precedence.

Secure Copy (SCP)

The **scp** CLI command is available for copying files in a secure manner between hosts on the network. The **scp** utility performs encrypted data transfers using the Secure Shell (SSH) protocol. In addition, **scp** uses available SSH authentication and security features, such as prompting for a password if one is required.

Secure Shell (SSH)

The Secure Shell feature provides a secure mechanism that allows you to log in to a remote switch, to execute commands on a remote device, and to move files from one device to another. Secure Shell provides secure, encrypted communications even when your transmission is between two untrusted hosts or over an unsecure network.

The OmniSwitch includes both client and server components of the Secure Shell interface and the Secure Shell FTP file transfer protocol. SFTP is a subsystem of the Secure Shell protocol. All Secure Shell FTP data are encrypted through a Secure Shell channel.

When used as an SSH Server, the following SSH Software is supported on the indicated operating systems:

SSH Software	Supported Operating Systems
OpenSSH	Sun Solaris, Mac OSX, Linux Red Hat
F-Secure	Sun Solaris, Win 2000, Win XP

SSH-Communication	Sun Solaris, Win 2000, Win XP, Linux Red Hat
PuTTY	Win 2000, Win XP
MAC-SSH	Mac OSX

When used as an SSH Client, the following SSH Software is supported on the indicated operating systems:

SSH Software	Supported Operating Systems	
OpenSSH	Sun Solaris, Linux Red Hat, AOS	
F-Secure	Sun Solaris, Win 2000	
SSH-Communication	Sun Solaris, Win 2000, Win XP, Linux Red Hat	

Secure Shell (SSH) Public Key Authentication

DSA public key authentication is supported when using PuTTY SSH software to generate the private and public key for the client and to access the switch. It is now possible to enforce the use of public key authentication only on the switch. By default, both password and public key authentication are allowed.

Server Load Balancing (SLB)

Server Load Balancing (SLB) software provides a method to logically manage a group of physical servers sharing the same content (known as a *server farm*) as one large virtual server (known as an *SLB cluster*). SLB clusters are identified and accessed at Layer 3 by the use of Virtual IP (VIP) addresses or at Layer 2 or Layer 3 by the use of a QoS policy condition. The OmniSwitch operates at wire speed to process client requests addressed to the VIP of an SLB cluster or classified by a QoS policy condition and send them to the physical servers within the cluster.

Using SLB clusters can provide cost savings (costly hardware upgrades can be delayed or avoided), scalability (as the demands on your server farm grow you can add additional physical servers), reliability (if one physical server goes down the remaining servers can handle the remaining workload), and flexibility (you can tailor workload requirements individually to servers within a cluster).

sFlow

sFlow is a network monitoring technology that gives visibility to the activity of the network, by providing network usage information. It provides the data required to effectively control and manage the network usage. sFlow is a sampling technology that meets the requirements for a network traffic monitoring solution.

sFlow is a sampling technology embedded within switches/routers. It provides the ability to monitor the traffic flows. It requires an sFlow agent software process running as part of the switch software and an sFlow collector, which receives and analyses the monitored data. The sFlow collector makes use of SNMP to communicate with an sFlow agent in order to configure sFlow monitoring on the device (switch).

SNMP

The Simple Network Management Protocol (SNMP) is an application-layer protocol that allows communication between SNMP managers and SNMP agents on an IP network. Network administrators use SNMP to monitor network performance and to solve network problems. SNMP provides an industry standard communications model used by network administrators to manage and monitor their network devices. The OmniSwitch supports SNMPv1, SNMPv2, and SNMPv3.

Source Learning

Source Learning builds and maintains the MAC address table on each switch. New MAC address table entries are created in one of two ways: they are dynamically learned or statically assigned. Dynamically learned MAC addresses are those that are obtained by the switch when source learning examines data packets and records the source address and the port and VLAN it was learned on. Static MAC addresses are user defined addresses that are statically assigned to a port and VLAN.

In addition, Source Learning also tracks MAC address age and removes addresses from the MAC address table that have aged beyond the configurable aging timer value.

Accessing MAC Address Table entries is useful for managing traffic flow and troubleshooting network device connectivity problems.

L2 Static Multicast Addresses - Static multicast MAC addresses are used to send traffic intended for a single destination multicast MAC address to multiple switch ports within a given VLAN. A static multicast address is assigned to one or more switch ports for a given VLAN. The ports associated with the multicast address are then identified as egress ports. When traffic received on ports within the same VLAN is destined for the multicast address, the traffic is forwarded on the egress ports that are associated with the multicast address.

One of the benefits of using static multicast addresses is that multicast traffic is switched in hardware and no longer subject to flood limits on broadcast traffic.

Software Rollback

The directory structure inherent in an OmniSwitch switch allows for a switch to return to a previous, more reliable version of image or configuration files.

Changes made to the configuration file may alter switch functionality. These changes are not saved unless explicitly done so by the user. If the switch reboots before the configuration file is saved, changes made to the configuration file prior to the reboot are lost.

Likewise, new image files should be placed in the working (non-certified) directory first. New image or configuration files can be tested to decide whether they are reliable. Should the configuration or image files prove to be less reliable than their older counterparts in the certified directory, then the switch can be rebooted from the certified directory, and "rolled back" to an earlier version.

Once the contents of the working directory are established as good files, then these files can be saved to the certified directory and used as the most reliable software to which the switch can be rolled back to in an emergency situation.

Spanning Tree

In addition to the Q2005 version of MSTP, the Alcatel-Lucent Spanning Tree implementation also provides support for the 802.1w Rapid Spanning Tree Algorithm and Protocol (RSTP) and the 802.1D Spanning Tree Algorithm and Protocol (STP). All three supported protocols ensure that there is always only one data path between any two switches for a given Spanning Tree instance to prevent network loops.

802.1Q 2005 (MSTP) - 802.1Q 2005 (Q2005) is a version of Multiple Spanning Tree Protocol (MSTP) that is a combination of the 802.1D 2004 and 802.1S protocols. This implementation of Q2005 also includes improvements to edge port configuration and provides administrative control to restrict port role assignment and the propagation of topology change information through bridge ports.

Q2005 (MSTP) is only available when the flat mode is active for the switch. The flat mode applies a single spanning tree instance across all VLAN port connections on a switch. MSTP allows the configuration of Multiple Spanning Tree Instances (MSTIs) in addition to the CST instance. Each MSTI is mapped to a set of VLANs. As a result, flat mode can now support the forwarding of VLAN traffic over separate data paths.

Automatic VLAN Containment (AVC)

In an 802.1s Multiple Spanning Tree (MST) configuration, it is possible for a port that belongs to a VLAN, which is not a member of an instance, to become the root port for that instance. This can cause a topology change that could lead to a loss of connectivity between VLANs/switches. Enabling Automatic VLAN Containment (AVC) helps to prevent this from happening by making such a port an undesirable choice for the root.

When AVC is enabled, it identifies undesirable ports and automatically configures them with an infinite path cost value.

Balancing VLANs across links according to their Multiple Spanning Tree Instance (MSTI) grouping is highly recommended to ensure that there is not a loss of connectivity during any possible topology changes. Enabling AVC on the switch is another way to prevent undesirable ports from becoming the root for an MSTI.

802.1D STP and 802.1w RSTP - STP and RSTP are available in both the flat and 1x1 mode. However, when using 802.1D or 802.1w in the flat mode, the single spanning tree instance per switch algorithm applies. Note that 802.1w is the default Spanning Tree protocol for the switch regardless of which mode is active. This default value will apply to future releases as well.

PVST+ Interoperability - The current Alcatel-Lucent 1x1 Spanning Tree mode has been extended to allow all user ports on an OmniSwitch to transmit and receive either the standard IEEE BPDUs or proprietary PVST+ BPDUs. An OmniSwitch can have ports running in either 1x1 mode when connecting to another OmniSwitch, or PVST+ mode simultaneously.

- It is mandatory that all the Cisco switches have the Mac Reduction Mode feature enabled.
- Priority values can only be assigned in multiples of 4096 to be compatible with the Cisco MAC Reduction mode.
- In a mixed OmniSwitch and Cisco environment, it is highly recommended to enable PVST+ mode on all OmniSwitches in order to maintain the same root bridge for the topology.

- Alcatel-Lucent's PVST+ interoperability mode is not compatible with a switch running in PVST mode.
- The same default path cost mode, long or short, must be configured the same way on all switches.

RRSTP - Ring Rapid Spanning Tree Protocol (RRSTP) is complimentary to either the Rapid Spanning Tree (RSTP) or the Multiple Spanning Tree Protocol (MSTP) but is designed to enhance convergence time in a ring configuration when a link failure occurs. Note that RRSTP is supported only in a ring topology where switches are connected point to point. In addition, there can be no alternate connections for the same instance between any two switches within a ring topology.

RRSTP reduces convergence time by finding the bridge that hosts the alternate (ALT) port and immediately changing the ALT port state to forwarding without altering the port state. This process quickly enables the data path. The RRSTP frame travels from the point of failure to the ALT port in both directions. The MAC addresses corresponding to the ports in the ring are flushed to make the data path convergence time much faster. While RRSTP is already reacting to the loss of connectivity, the standard BPDU carrying the information about the link failure is processed in normal fashion at each hop. When this BPDU reaches the bridge whose ALT port is now in the "ALT FWD" state, due to RRSTP frame processing, it updates the state of the two ports in the ring as per the STP standard.

RRSTP is only supported when the switch is configured in Flat mode (RRSTP or MSTP).

Switch Logging

The Switch Logging feature is designed to provide a high-level event logging mechanism that can be useful in maintaining and servicing the switch. Switch Logging uses a formatted string mechanism to process log requests from applications. When a log request is received, Switch Logging verifies whether the Severity Level included with the request is less than or equal to the Severity Level stored for the appropriate Application ID. If it is, a log message is generated using the formatting specified by the log request and placed on the Switch Log Queue, and Switch Logging returns control back to the calling application. Otherwise, the request is discarded. The default output device is the log file located in the Flash File System. Other output devices can be configured via Command Line Interface. All log records generated are copied to all configured output devices.

Command Line Interface can be used to display and configure Switch Logging information. Log information can be helpful in resolving configuration or authentication issues, as well as general errors.

Syslog to Multiple Hosts - Sending syslog files to multiple hosts is allowed. It is possible to specify up to a maximum of four servers.

Trivial File Transfer Protocol (TFTP) Client

TFTP, a client-server protocol, is used to transfer files between a TFTP server and client. TFTP client functionality on the OmniSwitch is used to download files from or upload files to a TFTP server.

Text File Configuration

The text file configuration feature allows you to configure the switch using an ASCII-based text file. You may type CLI commands directly into a text document to create a configuration file. This file resides in the switch's file system. You can create configuration files in the following ways.

- You may create, edit and view a file using a standard text editor (such as Microsoft NotePad) on a workstation. The resulting configuration file is then uploaded to the switch.
- You can invoke the switch's CLI **snapshot** command to capture the switch's current configuration into a text file.
- You can use the switch's text editor to create or make changes to a configuration file.

UDLD - Fiber and Copper

The unidirectional link detection protocol is a protocol that can be used to detect and disable malfunctioning unidirectional Ethernet fiber or copper links. Errors due to improper installation of fiber strands, interface malfunctions, media converter faults, etc can be detected and the link can be disabled. It operates at Layer 2 in conjunction with IEEE 802.3's existing Layer 1 fault detection mechanisms.

User Definable Loopback Interface

Loopback0 is the name assigned to an IP interface to identify a consistent address for network management purposes. The Loopback0 interface is not bound to any VLAN, therefore it always remains operationally active. This differs from other IP interfaces, such that if there are no active ports in the VLAN, all IP interfaces associated with that VLAN are not active. In addition, the Loopback0 interface provides a unique IP address for the switch that is easily identifiable to network management applications.

User Network Profiles

This feature provides the capability to have "Roles" assigned to users during authentication. This allows for a VLAN to be associated to a role, users matching the role will automatically be assigned to that VLAN. The role should be configured to match the Filter-ID attribute being returned by the RADIUS server.

VLANs

One of the main benefits of using VLANs to segment network traffic, is that VLAN configuration and port assignment is handled through switch software. This eliminates the need to physically change a network device connection or location when adding or removing devices from the VLAN broadcast domain.

The VLAN management software handles the following VLAN configuration tasks:

- Creating or modifying VLANs.
- Assigning or changing default VLAN port associations (VPAs).
- Enabling or disabling VLAN participation in the current Spanning Tree algorithm.
- Enabling or disabling classification of mobile port traffic by 802.1Q tagged VLAN ID.
- Enabling or disabling VLAN authentication.
- Defining VLAN IPX router interfaces to enable routing of VLAN IPX traffic.
- Enabling or disabling unique MAC address assignments for each router VLAN defined.

• Displaying VLAN configuration information.

Up to 4094 VLANs for Flat Spanning Tree mode and 252 VLANs for 1x1 Spanning Tree mode are supported. In addition, it is also possible to specify a range of VLAN IDs when creating or deleting VLANs and/or configuring VLAN parameters, such as Spanning Tree bridge values.

VLAN Stacking and Translation

VLAN Stacking provides a mechanism for tunneling multiple customer VLANs (CVLAN) through a service provider network over the Ethernet Metropolitan Area Network (EMAN). The service provider network uses one or more service provider VLANs (SVLAN) by appending an 802.1Q double tag or VLAN Translation on a customer port that contains the customer's assigned tunnel ID. This traffic is then encapsulated into the tunnel and transmitted through the service provider network. It is received on another Provider Edge (PE) that has the same tunnel ID.

This feature enables service providers to provide their customers with Transparent LAN Services (TLS). This service is multipoint in nature so as to support multiple customer sites or networks distributed over the edges of a service provider network.

This implementation of VLAN Stacking offers the following functionality:

- Ethernet service-based approach that is similar to configuring a virtual private LAN service (VPLS).
- Ingress bandwidth sharing across User Network Interface (UNI) ports.
- Ingress bandwidth rate limiting on a per UNI port, per CVLAN, or CVLAN per UNI port basis.
- CVLAN (inner) tag 802.1p-bit mapping to SVLAN (outer) tag 802.1p bit.
- CVLAN (inner) tag DSCP mapping to SVLAN (outer) tag 802.1p bit.
- Profiles for saving and applying traffic engineering parameter values.

Web-Based Management (WebView)

The switch can be monitored and configured using WebView, Alcatel-Lucent's web-based device management tool. The WebView application is embedded in the switch and is accessible via the following web browsers:

- Internet Explorer 6.0 and later for Windows NT, 2000, XP, 2003, Vista
- Firefox 2.0 for Windows and Solaris SunOS 5.10

WebView contains modules for configuring all software features in the switch. Configuration and monitoring pages include context-sensitive on-line help.

SNMP Traps

The following traps are supported in 6.3.3.R01:

No.	Trap Name	Platforms	Description
0	coldStart	all	The SNMP agent in the switch is reinitiating and itsk configuration may have been altered.
1	warmStart	all	The SNMP agent in the switch is reinitiating itself and its configuration is unaltered.
2	linkDown	all	The SNMP agent in the switch recognizes a failure in one of the communications links configured for the switch.
3	linkUp	all	The SNMP agent in the switch recognizes that one of the communications links configured for the switch has come up.
4	authenticationFailure	all	The SNMP agent in the switch has received a protocol message that is not properly authenticated.
5	entConfigChange	all	An entConfigChange notification is generated when a conceptual row is created, modified, or deleted in one of the entity tables.
6	aipAMAPStatusTrap	all	The status of the Alcatel-Lucent Mapping Adjacency Protocol (AMAP) port changed.
7	aipGMAPConflictTrap	_	This trap is not supported.
8	policyEventNotification	all	The switch notifies the NMS when a significant event happens that involves the policy manager.
9	chassisTrapsStr	all	A software trouble report (STR) was sent by an application encountering a problem during its execution.
10	chassisTrapsAlert	all	A notification that some change has occurred in the chassis.
11	chassisTrapsStateChange	all	An NI status change was detected.
12	chassisTrapsMacOverlap	all	A MAC range overlap was found in the backplane eeprom.
13	vrrpTrapNewMaster	all	This trap is not supported.
14	vrrpTrapAuthFailure		This trap is not supported.
15	healthMonDeviceTrap	all	Indicates a device-level threshold was crossed.
16	healthMonModuleTrap	all	Indicates a module-level threshold was crossed.
17	healthMonPortTrap	all	Indicates a port-level threshold was crossed.
18	bgpEstablished	all	This trap is not supported

No.	Trap Name	Platforms	Description
19	bgpBackwardTransition	all	This trap is not supported
20	esmDrvTrapDropsLink	all	This trap is sent when the Ethernet
			code drops the link because of exces-
			sive errors.
21	pimNeighborLoss	all	This trap is not supported.
22	dvmrpNeighborLoss	all	This trap is not supported.
23	dvmrpNeighborNotPruning	all	This trap is not supported.
24	risingAlarm	all	An Ethernet statistical variable has
			exceeded its rising threshold. The
			variable's rising threshold and whether
			it will issue an SNMP trap for this
			condition are configured by an NMS
			station running RMON.
25	fallingAlarm	all	An Ethernet statistical variable has
23	Turring Hurrin	un	dipped below its falling threshold. The
			variable's falling threshold and
			whether it will issue an SNMP trap for
			this condition are configured by an
			NMS station running RMON.
26	stpNewRoot	all	Sent by a bridge that became the new
	•		root of the spanning tree.
27	stpRootPortChange	all	A root port has changed for a spanning
			tree bridge. The root port is the port
			that offers the lowest cost path from
			this bridge to the root bridge.
28	mirrorConfigError	all	The mirroring configuration failed on
			an NI. This trap is sent when any NI
			fails to configure mirroring. Due to
			this error, port mirroring session will
			be terminated.
29	mirrorUnlikeNi	all	The mirroring configuration is deleted
			due to the swapping of different NI
			board type. The Port Mirroring session
			which was active on a slot cannot continue with the insertion of different
			NI type in the same slot.
30	slPCAMStatusTrap	all	The trap status of the Layer 2 pesudo-
30	Sii CAMStatus Hap	an	CAM for this NI.
31	unused	_	
32	unused		
33	slbTrapOperStatus	_	A change occurred in the operational
			status of the server load balancing
	· 0.6 . 7.11 . T	**	entity.
34	ifMauJabberTrap	all	This trap is sent whenever a managed
		**	interface MAU enters the jabber state.
35	sessionAuthenticationTrap	all	An authentication failure trap is sent
			each time a user authentication is

			refused.
36	trapAbsorptionTrap	all	The absorption trap is sent when a trap has been absorbed at least once.
37	alaStackMgrDuplicateSlotTrap	_	Two or more slots claim to have the same slot number.
38	alaStackMgrNeighborChangeTrap	_	Indicates whether or not the stack is in loop.
39	alaStackMgrRoleChangeTrap	_	Indicates that a new primary or secondary stack is elected.
40	lpsViolationTrap	all	A Learned Port Security (LPS) violation has occurred.
41	alaDoSTrap	all	Indicates that the sending agent has received a Denial of Service (DoS) attack.
42	gmBindRuleViolation	all	Occurs whenever a binding rule which has been configured gets violated.
43	unused		
44	unused		
45	unused		
46	unused	_	
47	pethPsePortOnOff	_	Indicates if power inline port is or is not delivering power to the a power inline device.
48	pethPsePortPowerMaintenanceStatus	_	Indicates the status of the power maintenance signature for inline power.
49	pethMainPowerUsageOn	_	Indicates that the power inline usage is above the threshold.
50	pethMainPowerUsageOff	_	Indicates that the power inline usage is below the threshold.
51	ospfNbrStateChange	all	This trap is not supported
52	ospfVirtNbrStateChange	all	This trap is not supported
53	httpServerDoSAttackTrap	all	This trap is sent to management station(s) when the HTTP server is under Denial of Service attack. The HTTP and HTTPS connections are sampled at a 15 second interval. This trap is sent every 1 minute while the HTTP server detects it is under attack.
54	alaStackMgrDuplicateRoleTrap	_	The element identified by alaStack-MgrSlotNINumber detected the presence of two elements with the same primary or secondary role as specified by alaStackMgrChasRole on the stack.
55	alaStackMgrClearedSlotTrap	_	The element identified by alaStack- MgrSlotNINumber will enter the pass through mode because its operational slot was cleared with immediate effect.
56	alaStackMgrOutOfSlotsTrap		One element of the stack will enter the
	<u> </u>		

			pass through mode because there are no slot numbers available to be assigned to this element.
57	alaStackMgrOutOfTokensTrap		The element identified by alaStack MgrSlotNINumber will enter the pass through mode because there are no tokens available to be assigned to this element.
58	ala Stack Mgr Out Of Pass Thru Slots Trap		There are no pass through slots avail able to be assigned to an element that is supposed to enter the pass through mode.
59	gmHwVlanRuleTableOverloadAlert	all	An overload trap occurs whenever a new entry to the hardware VLAN rule table gets dropped due to the overload of the table.
60	lnkaggAggUp	all	Indicates the link aggregate is active. This trap is sent when any one port of the link aggregate group goes into the attached state.
61	lnkaggAggDown	all	Indicates the link aggregate is not active. This trap is sent when all ports of the link aggregate group are no longer in the attached state.
62	lnkaggPortJoin	all	This trap is sent when any given port of the link aggregate group goes to the attached state.
63	InkaggPortLeave	all	This trap is sent when any given port detaches from the link aggregate group.
64	lnkaggPortRemove	all	This trap is sent when any given port of the link aggregate group is removed due to an invalid configura tion.
65	pktDrop	all	The pktDrop trap indicates that the sending agent has dropped certain packets (to blocked IP ports, from spoofed addresses, etc.).
66	monitorFileWritten	all	A File Written Trap is sent when the amount of data requested by the user has been written by the port monitor ing instance.
67	alaVrrp3TrapProtoError	all	Indicates that a TTL, checksum, or version error was encountered upon receipt of a VRRP advertisement.
68	alaVrrp3TrapNewMaster	all	The SNMP agent has transferred from the backup state to the master state.
69	gmHwMixModeSubnetRuleTableOverloadAlert	all	A subnet overload trap occurs in mixed mode whenever a new entry to the HW subnet rule table gets dropped in OS6800 due to the overload of the

			table.
70	pethPwrSupplyConflict	all	Power supply type conflict trap.
71	pethPwrSupplyNotSupported	all	Power supply not supported trap.
72	lpsPortUpAfterLearningWindowExpiredTrap	all	When an LPS port joins or is enabled
, 2	ipsi site printei Ecanning window Expired Trup	un	after the Learning Window is expired,
			the MAC address learning on the port
			will be disabled, and this trap is
			generated as a notification. This trap
			will also be generated at the time the
			Learning Window expires, with a slice
			and port value of 0.
73	vRtrIsisDatabaseOverload	all	This trap is not supported.
74	vRtrIsisManualAddressDrops	all	This trap is not supported.
75	vRtrIsisCorruptedLSPDetected	all	This trap is not supported.
76	vRtrIsisMaxSeqExceedAttempt	all	This trap is not supported.
77	vRtrIsisIDLenMismatch	all	This trap is not supported.
78	vRtrIsisMaxAreaAddrsMismatch	all	This trap is not supported.
79	vRtrIsisOwnLSPPurge	all	This trap is not supported.
80	vRtrIsisSequenceNumberSkip	all	This trap is not supported.
81	vRtrIsisAutTypeFail	all	This trap is not supported.
82	vRtrIsisAuthFail	all	This trap is not supported.
83	vRtrIsisVersionSkew	all	This trap is not supported.
84	vRtrIsisAreaMismatch	all	This trap is not supported.
85	vRtrIsisRejectedAdjacency	all	This trap is not supported.
86	vRtrIsisLSPTooLargeToPropagate	all	This trap is not supported.
87	vRtrIsisOrigLSPBufSizeMismatch	all	This trap is not supported.
88	vRtrIsisProtoSuppMismatch	all	This trap is not supported.
89	vRtrIsisAdjacencyChange	all	This trap is not supported.
90	vRtrIsisCircIdExhausted	all	This trap is not supported.
91	vRtrIsisAdjRestartStatusChange	all	This trap is not supported.
92	dot1agCfmFaultAlarm	all	A MEP has lost contact with one or
72	dotrage iiii data tariii	un	more MEPs. A notification (fault
			alarm) is sent to the management entity
			with the OID of the MEP that has
			detected the fault.
93	Unused	all	-
94	lldpRemTablesChange	all	A lldpRemTablesChange notification
			is sent when the value of
			lldpStatsRemTableLastChangeTime
			changes.
95	chassisTrapsPossibleDuplicateMac	all	The old PRIMARY element cannot be
			detected in the stack. There is a
			possiblity of a duplicate MAC address
			in the network.
96	alaPimNeighborLoss	all	This trap is not supported.
97	alaPimInvalidRegister	all	This trap is not supported.
98	alaPimInvalidJoinPrune	all	This trap is not supported.
99	alaPimRPMappingChange	all	This trap is not supported
100	alaPimInterfaceElection	all	This trap is not supported

101	lpsLearnMac	all	Generated when an LPS port learns a bridged MAC address.
102	gvrpVlanLimitReachedEvent	all	Generated when the number of vlans
			learned dynamically by GVRP has
			reached a configured limit.
103	alaNetSecPortTrapAnomaly	all	This trap is not supported.
104	alaNetSecPortTrapQuarantine	all	This trap is not supported.
105	udldStateChange	all	Generated when the state of the UDLD
			protocol changes.
106	healthMonIpcTrap		IPC pools exceed usage/ causing
			trap."
107	Reserved	all	-
108	Reserved	all	-
109	arpMaxLimitReached	all	Generated when the hardware table
			has reached supported maximum
			entries.
110	ndpMaxLimitReached	all	Generated when the hardware table
			has reached supported maximum
			entries.
111	ripRouteMaxLimitReached	all	Generated when RIP database has
			reached supported maximum entries.
			RIP will discard any new updates.
112	ripngRouteMaxLimitReached	all	Generated when RIPng database has
			reached supported maximum entries.
			RIPng will discard any new updates.

Unsupported Software Features

CLI commands and Web Management options may be available in the switch software for the following features. These features are not supported:

Feature	Platform	Software Package
BGP	OS6400	advanced routing
DVMRP	OS6400	advanced routing
IS-IS	OS6400	advanced routing
Multicast Routing	OS6400	advanced routing
OSPF, OSPFv3	OS6400	advanced routing
PIM	OS6400	advanced routing
Traffic Anomaly Detection	OS6400	advanced routing
VLAN Stacking Legacy Mode	OS6400	advanced routing
VRRP	OS6400	base

Unsupported CLI Commands

The following CLI commands are not supported in this release of the software:

Software Feature	Unsupported CLI Commands
Chassis Mac Server	mac-range local
	mac-range duplicate-eeprom
	mac-range allocate-local-only
	show mac-range status
DHCP Relay	ip helper traffic-suppression
	ip helper dhcp-snooping port traffic-suppression
Flow Control	flow
	interfaces flow
	show flow control
Hot Swap	reload ni [slot] #
	[no] power ni all
PoE	lanpower redundant-power
QoS	qos classify fragments
	qos flow timeout
System	install
	fpga upgrade ni
	power ni [slot]
VLANs	vlan router mac multiple enable disable
	vlan binding mac-port-protocol
	vlan binding mac-ip
	vlan binding ip-port

Unsupported MIBs

The following MIBs are not supported in this release of the software:

Feature	MIB
BGP	AlcatelIND1Bgp
	IETF_BGP4
DVMRP	AlcatelIND1Dvmrp
	IETF_DVMRP_STD_DRAFT
IS-IS	AlcatelIND1Isis
	IETF_ISIS
OSPF/OSPFv3	AlcatelIND1DrcTm
	AlcatelIND1Ospf
	AlcatelIND1Ospf3
	IETF_OSPF
	IETF-OSPF-OSPFv3
Multicast Routing	AlcatelIND1Ipmrm
	AlcatelIND11pMcastDraft
PIM	AlcatelIND1Pim
	AlcatelIND1PimBsrDraft
	AlcatelIND1PimStdDraft
Quality of Service (QoS)	IETF_P_BRIDGE
Traffic Anomaly Detection	AlcatelIND1Ns

Unsupported MIB Variables

MIB Name	Unsupported MIB variables	
AlcatelIND1AAA	aaauProfile	
AlcatelIND1Chassis	chasControlVersionMngt	
	chasEntPhysAdminStatus [powerOn, powerOff]	
	chasEntPhysAdminStatus [reset]	
	chasEntPhysAdminStatus [takeover]	
	chasSupervisionRfsLsTable	
AlcatelIND1Dot1Q	qPortVlanForceTagInternal	
AlcatelIND1GroupMobility	vPortIpBRuleTable	
	vMacIpBRuleTable	
	vMacPortProtoBRuleTable	
	vCustomRuleTable	
AlcatelIND1Health	healthDeviceTemperatureCmmCpuLatest	
	healthDeviceTemperatureCmmCpu1MinAvg	
	healthDeviceTemperatureCmmCpu1HrAvg	
	healthDeviceTemperatureCmmCpu1HrMax	
AlcatelIND1Ipms	alaIpmsForwardSrcIpAddr	
_	alaIpmsForwardSrcIfIndex	
AlcatelIND1LAG	alclnkaggAggEniActivate	
	alclnkaggSlotTable	

MIB Name	Unsupported MIB variables	
AlcatelIND1Pcam	alcatelIND1PCAMMIBObjects	
	alaCoroL3HrePerModeTable	
	alaCoroL3HrePerCoronadoStats Table	
	alaCoroL3HreChangeTable	
AlcatelIND1Port	esmPortCfgLongEnable	
	esmPortCfgRuntEnable	
	esmPortCfgRuntSize	
	esmPortPauseSlotTime	
	esmPortCfgFLow	
	alcether10GigTable	

MIB Name	Unsupported MIB variables
AlcatelIND1QoS	alaQoSPortPdiTable
	alaQoSSlotPcamTable
	alaQoSPortProtocolTable
	alaQoSSlotProtocolTable
	alaQoSSlotDscpTable
	alaQoSRuleReflexive
	alaQoSAppliedRuleReflexive
	alaQoSActionSourceRewriteIpAddr
	alaQoSActionSourceRewriteIpAddrStatus
	alaQoSActionSourceRewriteIpMask
	alaQoSActionTable alaQoSActionSourceRewriteNetworkGroup
	alaQoSActionTable alaQoSActionSourceRewriteNetworkGroupStatus
	alaQoSActionTable alaQoSActionDestinationRewriteIpAddr
	alaQoSActionTable alaQoSActionDestinationRewriteIpAddrStatus
	alaQoSActionTable alaQoSActionDestinationRewriteIpMask
	alaQoSActionTable alaQoSActionDestinationRewriteNetworkGroup
	alaQoSActionTable alaQoSActionDestinationRewriteNetworkGroupStatus
	alaQoSActionTable alaQoSActionLoadBalanceGroup
	alaQoSActionTable alaQoSActionLoadBalanceGroupStatus
	alaQoSActionTable alaQoSActionPermanentGatewayIpAddr
	alaQoSActionTable alaQoSActionPermanentGatewayIpAddrStatus
	alaQoSActionTable alaQoSActionAlternateGatewayIpAddr
	alaQoSActionAlternateGatewayIpAddrStatus
	alaQoSAppliedActionSourceRewriteIpAddr
	alaQoSAppliedActionSourceRewriteIpAddrStatus
	alaQoSAppliedActionSourceRewriteIpMask
	alaQoSAppliedActionSourceRewriteNetworkGroup
	alaQoSAppliedActionSourceRewriteNetworkGroupStatus
	alaQoSAppliedActionDestinationRewriteIpAddr
	alaQoSAppliedActionDestinationRewriteIpAddrStatus
	alaQoSAppliedActionDestinationRewriteIpMask
	alaQoSAppliedActionDestinationRewriteNetworkGroup
	alaQoSAppliedActionDestinationRewriteNetworkGroupStatus
	alaQoSAppliedActionLoadBalanceGroup
	alaQoSAppliedActionLoadBalanceGroupStatus
	alaQoSAppliedActionPermanentGatewayIpAddr
	alaQoSAppliedActionPermanentGatewayIpAddrStatus
	alaQoSAppliedActionAlternateGatewayIpAddr
	alaQoSAppliedActionAlternateGatewayIpAddrStatus
	alaQoSPortDefaultQueues
	alaQoSPortAppliedDefaultQueues
	alaQoSConfigNatTimeout
	alaQoSConfigAppliedNatTimeout
	alaQoSConfigReflexiveTimeout
	alaQoSConfigAppliedReflfexiveTimeout
	alaQoSConfigFragmentTimeout
	alaQoSConfigAppliedFragmentTimeout
	alaQoSConfigClassifyFragments
	alaQoSConfigAppliedClassifyFragments

MIB Name	Unsupported MIB variables	
AlcatelIND1SystemService	systemUpdateStatusTable	
AlcatelIND1VlanManager	vlanIpxNet	
	vlanIpxEncap	
	vlanIpxRipSapMode	
	vlanIpxDelayTicks	
	vlanIpxStatus	
	vlanSetIpxRouterCount	
	vlanSetMultiRtrMacStatus	
AlcatelIND1WebMgt	alaIND1WebMgtRFSConfigTable	
	alaIND1WebMgtHttpPort	
	alaIND1WebMgtHttpsPort	
IEEE 802 1X	dot1xAuthDiagTable	
	dot1xAuthSessionStatsTable	
	dot1xSuppConfigTable	
	dot1xSuppStatsTable	
IETF BRIDGE	dot1dTpPortTable	
	dot1dStaticTable	
IETF ENTITY	entLogicalTable	
	entLPMappingTable	
	entAliasMappingTable	
IETF ETHERLIKE	dot3CollTable	
	dot3StatsSQETestErrors	
	dot3StatsInternalMacTransmitErrors	
	dot3StatsCarrierSenseErrors	
	dot3StatsInternalMacReceiveErrors	
	dot3StatsEtherChipSet	
	dot3StatsSymbolErrors	
	dot3ControlInUnknownOpcodes	
IETF_IF	ifRcvAddressTable	
	ifTestTable	
IETF IP FORWARD MIB	ipForwardTable	
IETF IPMROUTE STD	ipMrouteScopeNameTable	
IETF MAU (RFC 2668)	rpMauTable	
	rpJackTable	
	broadMauBasicTable	
	ifMauFalseCarriers	
	ifMauTypeList	
	ifMauAutoNegCapability	
	ifMauAutoNegCapAdvertised	
	ifMauAutoNegCapReceived	
IETF_OSPF (RFC 1850)		
IETF OSPF TRAP	ospfTrapControl	
IETF-PIM	pimRPTable	
IETF P BRIDGE	dot1dExtBase	
ILLI I DKIDGE	dot1dExtBase dot1dPortCapabilitiesTable	
	dot1dPortPriorityTable	
	dot1dUserPriorityRegenTable	
	dot1dTrafficClassTable	
	portariame classiant	

MIB Name	Unsupported MIB variables
	dot1dPortOutboundAccessPriorityTable
	dot1dPortGarpTable
	dot1dPortGmrpTable
	dot1dTpHCPortTable
	dot1dTpPortOverflowTable
IETF_Q_BRIDGE (RFC 2674)	dot1qTpGroupTable
	dot1qForwardAllTable
	dot1qForwardUnregisteredTable
	dot1qStaticMulticastTable
	dot1qPortVlanStatisticsTable
	dot1qPortVlanHCStatisticsTable
	dot1qLearningConstraintsTable
IETF_RIPv2	rip2IfConfDomain
IETF_RMON	hostControlTable
	hostTable
	hostTimeTable
	hostTopNControlTable
	hostTopNTable
	matrixControlTable
	matrixSDTable
	matrixDSTable
	filterTable
	channelTable
	bufferControlTable
	captureBufferTable
IETF_RS_232 (RFC 1659)	all synchronous and sdlc objects and tables
	rs232SyncPortTable
IETF_SNMPv2	sysORTable
	snmpTrap
	sysORLastChange
IETF_SNMP_ COMMUNITY (RFC	snmpTargetAddrExtTable
2576)	
IETF_SNMP_ NOTIFICATION (RFC	snmpNotifyTable
2576)	snmpNotifyFilterProfileTable
	snmpNotifyFilterTable
IETF_SNMP_PROXY (RFC 2573)	snmpProxyTable
IETF_SNMP_TARGET (RFC 2573)	snmpTargetAddrTable
	snmpTargetParamsTable
	snmpTargetSpinLock
IETF_SNMP_USER_BASED_SM	UsmUser
(RFC 2574)	
IETF_SNMP_VIEW_BASED_ACM	vasmMIBViews
(RFC 2575)	

Open Problem Reports and Feature Exceptions

The problems listed here include problems known at the time of the product's release. Any problems not discussed in this section should be brought to the attention of the Alcatel-Lucent Technical Support organization as soon as possible. Please contact customer support for updates on problem reports (PRs) where no known workaround was available at the time of release.

SWITCH MANAGEMENT

SNMP

PR	Description	Workaround
123040	Occasionally the SNMP counter	There is no known workaround at this
	etherStatsCollisions will incorrectly indicate a	time.
	large number of collisions.	
123062	Switch does not return a value for the FPGA	Use the 'show hardware info'
	version when doing an SNMP Get.	command via the CLI.

Remote Access

PR	Description	Workaround
119791	An SSH connection may fail when the switch is	Use WebView or Telnet and enable
	experiencing high CPU utilization.	the autoNMS feature.

Web Management

Feature Exceptions

WebView uses signed applets for the automatic IP reconfiguration. Those applets are signed using VeriSign Certificates that expire every year. The certificate used for Internet Explorer and Netscape expires every August. WebView users have to validate a warning indicating that the certificate used by the applet has expired.

PR	Description	Workaround
122003	From webview if simultaneous TFTP operations are initiated, no error message is displayed. Only	Only initiate one TFTP session from WebView.
	one TFTP operation will succeed.	Web view.

LAYER 2

Ethernet

PR	Description	Workaround
122496	Changing the combo port hybrid status from preferred-fiber to preferred-copper may result in improper link status.	Use forced mode (copper or fiber) on both ends of the link.
122724	Abnormal pattern or loss of traffic might be observed when both the media (copper and fiber) are present at the same time on the same combo port.	Use forced mode (copper or fiber) on both ends of the link.

sFlow

PR	Description	Workaround
122062	sFlow trend may display the bandwidth in Terabits in the ingress direction under Top sources, Top destinations, Top input vlan etc. This issue will be observed only if ingress traffic is received with no egress traffic on given port.	There is no known workaround at this time.
123003	IP directed broadcast traffic is not being updated for sFlow.	There is no known workaround at this time.

>nai	าทเทศ	Iree
opui	nning	1100

PR	Description	Workaround
95308	Temporary traffic loops could happen under the following scenarios: 1. Reloading of a non root bridge. This happens when the bridge is going down and is due to the sequential bringing down of NIs during a reload process. It is purely temporary in nature and stops when all the NIs eventually get powered off. 2. NI power down When an NI power down command is executed for an NI and if that NI has the Root port port and other NIs have Alternate ports, it is possible to see some traffic looping back from the newly elected Root port. The traffic loop back is temporary and will stop once the NI gets powered off. 3. New Root bridge selection Temporary loops could occur during the process of electing a new Root bridge, if this election process is triggered by the assignment a worse priority for the existing root bridge or a root bridge failure. This happens due to the inconsistent spanning tree topology during the convergence and stops entirely once the network converges	For items 1 and 2 above there is no work around presently. For item 3 the following work around could be applied: 1. Tune the max age (and or max hops in the case of MSTP) parameter to a lower value that is optimal for the network. This will reduce the convergence time and thereby the duration of temporary loops. 2. To select a new root bridge, consider assigning better priority for that bridge instead of assigning worse priority for the existing root bridge.
108339	Dynamic aggregates may be configured with the participant links spanning multiple elements of a stack. In this case, if the line card where the primary link of the aggregate resides goes down, there may be a small time interval (roughly 10-15 seconds) during which outgoing BPDUs may be discarded. As result, the hello interval on neighboring switches may expire leading to STP reconvergence.	Use static linkagg to obtain optimal performance.
121509	If a port with PVST+ enabled is connected to third-party switching device and the STP state is repetitively toggled, the port link may go down.	The link comes UP again if the corresponding port on the remote side is made administratively DOWN and then back UP.

VLAN Stacking

PR	Description	Workaround
121635	The maximum number of VLANs that should be created using the "ethernet-service svlan" range command is 128. Additionally, user should wait 30 seconds before running the command again.	There is no known workaround at this time.
	The maximum number of "SVLAN to NNI" associations that should be created using the "ethernet-service svlan nni" range command is 1K. Additionally, user should wait 30 seconds before running the command again.	

LAYER 3

General

PR	Description	Workaround
121070	Disabling the forward mode on an IP-IP tunnel	There is no known workaround at this
	interface has no effect.	time.
122574	When configuring ECMP and static routes over a	Use a dynamic routing protocol.
	VLAN with more than one port connected to	
	different IP gateways, traffic may not converge if	
	a port goes down.	

DNS

PR	Description	Workaround
122144	IPv4 and IPv6 DNS feature will work only with the first configured name-server. Even though there is an option of specifying up to 3 name- servers, only the first name-server will be effective.	There is no known workaround at this time.
122091	If IPv4 and IPv6 nameservers are configured, the nslookup command may display an error message indicating a host lookup was unsuccessful for both IPv4 and IPv6. For an IPv4 lookup, the error message is a display issue only, for IPv6 the lookup will fail.	There is no known workaround at this time.
121988	The system currently does not support adding IPv6 DNS server addresses using SNMP.	CLI can be used for adding IPv6 DNS server addresses.

UDP/TCP

PR	Description	Workaround
122333	Having multiple OmniSwitches with the same	Ensure each OmniSwitch has a unique
	system name within the same broadcast domain	system name.
	may result in incorrect binding entries for some	
	switches if option-82 is enabled for DHCP relay.	

	By default, switches are assigned the name "VxTarget".	
124656	Once the persistency mode is enabled for dhcp-snooping, setting the mode to disabled has no effect until the configuration is saved and the switch is rebooted.	There is no known workaround at this time.

Quality of Service

General

PR	Description	Workaround
122310	Qos max ingress bandwidth throughput may fluctuate from configured value. However average throughput will be same as the configured value.	There is no known workaround at this time.
122390	When adding a 5th MAC address using the 'policy mac group alaPhones' command, a warning message is being displayed instead of an error message.	There is no known workaround at this time.

Security

AAA Services

PR	Description	Workaround
119638	When using ASA authentication via a TACACS+ server, a user may not be able to issue the 'show drclog' command for the Debug PM family.	There is no known workaround at this time.
120079	When using ASA and end-user profiles a user may have read-only access to VLANs which should be restricted.	There is no known workaround at this time.

AVLAN

PR	Description	Workaround	
121543	Where there are more than 500 authentication users, an authenticated mobile port may stay in a mobile VLAN even after the port status is changed from down to up.	There is no known workaround at this time.	

Device Classification

PR	Description	Workaround
122801	Cannot enable ip-source-filtering on a mobile port if port status is inactive	ip-source-filtering on a mobile port can be enabled when the port is in
	1 1	forwarding state.

System

NI System

PR	Description	Workaround
122103	For some SFP transceivers the laser wave length is displayed as N/A. This is only a display issue and does not affect the operation of the SFP.	There is no known workaround at this time.

Technical Support

Alcatel-Lucent technical support is committed to resolving our customer's technical issues in a timely manner. Customers with inquiries should contact us at:

Region	Phone Number
North America	800-995-2696
Latin America	877-919-9526
Europe	+33-38-855-6929
Asia Pacific	+65 6240 8484
Other International	818-878-4507

Email: support@ind.alcatel.com

Internet: Customers with Alcatel-Lucent service agreements may open cases 24 hours a day via Alcatel-Lucent 's support web page at: service.esd.alcatel-lucent.com.

Upon opening a case, customers will receive a case number and may review, update, or escalate support cases on-line. Please specify the severity level of the issue per the definitions below. For fastest resolution, please have telnet or dial-in access, hardware configuration—module type and revision by slot, software revision, and configuration file available for each switch.

Severity 1 Production network is down resulting in critical impact on business—no workaround available.

Severity 2 Segment or Ring is down or intermittent loss of connectivity across network.

Severity 3 Network performance is slow or impaired—no loss of connectivity or data.

Severity 4 Information or assistance on product feature, functionality, configuration, or installation.